

ON QC Mix Compliance (MC) Instructions

Review your shipping address shown in the portal and update it if there are any changes through the request for services. When you receive your samples, review the shipment before signing off with the shipper.

SAMPLES

In your shipment, you should have received 2 bulk samples, 1 identified as Material **A-MC-N or C-N** and the other as Material **B-MC-N or D-N**, have been provided. Each of these samples shall be tested individually, i.e., do not combine them.

TESTING

On receipt, each sample shall be warmed, and a representative portion obtained by quartering or using a riffle splitter. 2 replicates of this representative portion shall then be tested as per LS-264 (latest revision), "Method of Test for Theoretical Maximum Relative Density of Bituminous Paving Mixtures".

Sufficient material from each sample shall then be heated to the appropriate temperature to prepare 3 briquettes. The briquette specimens shall be prepared as per LS-261 (latest revision), "Method of Test for Preparation of Marshall Specimens".

Trough, moulds and hammers shall be preheated to 135 ± 5 °C.

For A-MC-N, use a briquette mass 1260 ± 25 g and the compaction temperature of 135° C For B-MC-N, use a briquette mass 1250 ± 25 g and the compaction temperature of 133° C

For C-MC-N, use a briquette mass 1250 ± 25 g and the compaction temperature of 130° C For D-MC-N, use a briquette mass 1240 ± 25 g and the compaction temperature of 133° C

Note 1: With the manual hammer, the following should be noted: (a) the compaction pedestal must be secured; (b) the timing of blows for the 75 blows should be 60 blows per minute (plus or minus 5 blows); (c) the hammer should be allowed to rebound between successive blows.

Thereafter the specimens shall be tested for:

- 1. Bulk relative density, LS-262 (latest revision) "Bulk Relative Density of compacted Bituminous Mixes"
- 2. Marshall stability and flow, LS-263 (Revision 32), "Resistance to Plastic Flow of Bituminous Mixtures using the Marshall Apparatus" (See **Note 4**)
- 3. Air voids, LS-265, (latest revision) "Determination of Percent Air Voids in Compacted Dense Bituminous Pavement Mixtures"
- 4. Voids in mineral aggregate, LS-266 (latest revision), "Determination of V.M.A. in Compacted Bituminous Mixtures"

Note 2: For calculation of the V.M.A. use the values for aggregate bulk relative densities and asphalt cement provided on Pages **3** and/or Page **4**. An example of a completed work sheet is shown on page **5**. A copy of this sheet must be submitted with the laboratory work sheets. The VMA values shall be reported in the designated spaces on the Mix Compliance Report form.

Note 3: Please identify the method used for the determination of flow by selecting from the dropdown feature on the Reporting Form.

ON QC Mix Compliance (MC) Instructions

Note 4: Please be advised that LS-263, which included the use of the timing method for the determination of flow, was withdrawn by MTO effective May 2019. It has effectively been replaced by ASTM D6927 that describes the use of the flow meter or the automated method for the determination of flow. For 2024 CCIL certification purposes, the LS-263 will be used.

An example of a completed report form is shown on Page 6.

All test results shall be reported online and submitted by 2024 January 5, Friday.

Remember: Your lab's worksheets must be submitted through the portal with your correlation report. Please combine all worksheets for each portal report into a single pdf prior to uploading. You are required to keep all original worksheet hard copies in a secure dedicated location such as a sealed envelope that is available to CCIL upon request. Do not courier/mail/fax/e-mail the worksheets to CCIL.

DO NOT send reports and worksheets by fax.

ON QC Mix Compliance (MC) Instructions

MIX COMPLIANCE - % VMA WORK SHEET (Materials A and B)

LABORATORY No: l	_ABORATOR	Y NAN	NAME:			
MATERIAL A						
Coarse Aggregate 1			(CA1)	39.0%		
Fine Aggregate 1			(FA1)	30.5%		
Fine Aggregate 2			(FA2)	15.3%		
Fine Aggregate 3				15.3%		
BRD Coarse Aggregate			(CA)	2.955		
BRD Fine Aggregate 1			(FA1)	2.688		
BRD Fine Aggregate 2			(FA2)	2.742		
BRD Fine Aggregate 3			(FA3)	2.695		
Compacted Mix BRD (Db) SAMP	LE #	_				
			(1)	_		
			(2)	_		
			(3)	-		
		% AC		5.30 % (by mass of total mix)		
Combined Aggregate BRD (Gb)						
% VMA = (1) (2)	_ (3)	_				
MATERIAL B						
Coarse Aggregate 1			(CA1)	37.0%		
Fine Aggregate 1			(FA1)	48.0%		
RAP				15.0%		
BRD Coarse Aggregate 1			(CA1)	2.690		
BRD Fine Aggregate 1			(FA1)	2.675		
BRD RAP				2.719		
Compacted Mix BRD (Db)			SAMPLE #			
			(1)	_		
			(2)			
			(3)	-		
		%AC		5.00 % (by mass of total mix)		
Combined Aggregate BRD (Gb)	:	_				
% VMA = (1) (2)	_ (3)	_				

ON QC Mix Compliance (MC) Instructions

MIX COMPLIANCE - % VMA WORK SHEET (Materials C and D)

LABORATORY No: LABORATO	ABORATORY NAME:				
MATERIAL C					
Coarse Aggregate	(C	:A1)	42.0%		
Fine Aggregate 1	(F	A1)	15.0%		
Fine Aggregate 2	(F	A2)	13.1%		
Fine Aggregate 3			29.9%		
BRD Coarse Aggregate	(C	ŒΑ)	2.693		
BRD Fine Aggregate 1	(F	A1)	2.669		
BRD Fine Aggregate 2	(F	A2)	2.679		
BRD Fine Aggregate 3	(F	A3)	2.934		
Compacted Mix BRD (Db) SAMPLE #					
)			
)			
	(3)	_		
	% AC		5.20 % (by mass of to	otal mix)	
Combined Aggregate BRD (Gb):					
% VMA = (1) (2) (3)					
MATERIAL D					
Coarse Aggregate	(C	A1)	38.5%		
Fine Aggregate 1	(F	A1)	46.5%		
RAP			15.0%		
BRD Coarse Aggregate	(C	Ά1)	2.693		
BRD Fine Aggregate 1			2.681		
BRD RAP			2.715		
Compacted Mix BRD (Db)	SA	AMPLE	E #		
)			
		.)			
	(3)	_		
	% AC		5.00% (by mass of to	tal mix)	
Combined Aggregate BRD (Gb):					
% VMA = (1) (2) (3)					

ON QC Mix Compliance (MC) Instructions

MIX COMPLIANCE - % VMA WORK SHEET (EXAMPLE)

LABORATORY No: 175 LABORATORY NAME Apex Construction

MATERIAL A

Coarse Aggregate (CA) 45.2% Fine Aggregate #1 (FA1) 54.8%

BRD Coarse Aggregate (CA) BRD 2.697 BRD Fine Aggregate #1 (FA1) BRD 2.659

Compacted Mix BRD (Db) SAMPLE A-MC 14

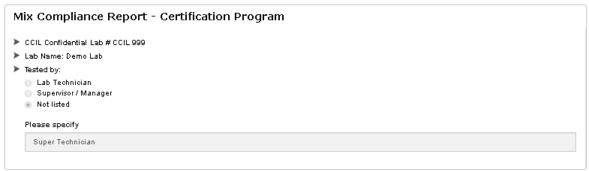
(1) 2.372

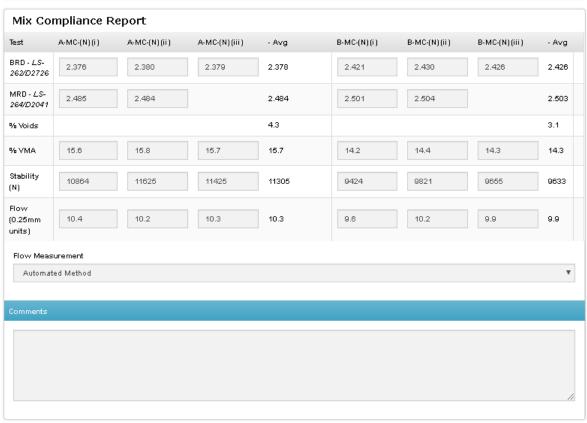
(2) 2.369

(3) 2.374

% AC <u>5.27%</u> (by mass of total mix)

Combined Aggregate BRD (Gb): 2.673


% VMA = (1) <u>15.9</u> (2) <u>16.1</u> (3) <u>15.9</u>



ON QC Mix Compliance (MC) Instructions

2020 Asphalt Reporting Form Mix Compliance

