MIX DESIGN (ON QC)

PLEASE NOTE: Type A laboratories are **NOT** required to carry out additional testing on Mix compliance (MC) samples.

SAMPLES

One bag of coarse and one bag of fine aggregate for each of two mix designs (four bags total) along with asphalt cement have been provided.

Note 1: To ensure that all laboratories receive identical samples, the fine aggregate samples have been recombined from individual sieve sizes. Before commencing any testing, these samples should be **carefully but thoroughly mixed** (each fine aggregate separately) by running through a mini-splitter several times.

Note 2: Pay attention to the notes included with each weigh card.

PREPARATION OF THE MATERIALS BY THE PARTICIPATING LABORATORIES

On receipt of the bulk samples of coarse and fine aggregate, dry the samples to constant mass and size the **coarse** aggregate (down to 2.36 mm size).

<u>TESTING</u>

AGGREGATES

Coarse aggregates shall be tested according to LS-604 (Latest Revision) "Method of test for Relative Density and Absorption of Coarse Aggregate" and fine aggregates shall be tested according to LS-605 (Latest Revision) "Method of test for Relative Density and Absorption of Fine Aggregate". <u>Two</u> determinations for each aggregate (MDCA-I-N; MDCA-II-N, MDFA-I-N; MDFA-II-N) are required.

MIXES

Combine the dried aggregate and asphalt cement **(MDAC-I-N or MDAC-II-N)** in the proportions given on the attached mix "WEIGH CARDS", for Material I and Material II on page **3**. MTO laboratory test method LS-261 (latest revision) "Method of Test for Preparation of Marshall Specimens" shall then be followed to prepare the Marshall specimens.

- **Note 3**: Samples for each Marshall briquette specimen and Maximum Relative Density Test are to be batched individually. A total of six (6) briquettes and two (2) Maximum Relative Density samples shall be prepared for each mix. Manual compaction of briquettes shall be carried out using **75 blows per side**.
- **Note 4**: With the manual hammer, the following should be noted: (a) compaction pedestal must be secured; (b) the timing of blows should be 60 ± 5 blows per minute; (c) the hammer should be allowed to rebound between successive blows.

The mixing temperature and compaction temperature shall be as indicated on the mix design weigh card forms. Trough, moulds and hammers shall be preheated to 135±5°C.

Thereafter the specimens shall be tested for:

- 1. Bulk relative density, LS-262 (latest revision), "Bulk Relative Density of Compacted Bituminous Mixes"
- 2. Marshall stability and flow, LS-263 (Revision 32), "Resistance to Plastic Flow of Bituminous Mixtures using the Marshall Apparatus". (See Note 6).

Note 5: Stability must be reported in Newtons and Flow in 0.25mm units. **Note 6:** Please be advised that LS-263, which included the use of the timing method for the determination of flow, was withdrawn by MTO effective May 2019. It has effectively been replaced by ASTM D6927 that describes the use of the flow meter or the automated method for the determination of flow. For 2023 CCIL certification purposes, the LS-263 will be used.

- 3. Maximum relative density, LS-264 (latest revision), "Theoretical Maximum Relative Density of Bituminous Paving Mixtures"
- 4. Air voids, LS-265, (latest revision), "Determination of Percent Air Voids in Compacted Dense Bituminous Pavement Mixtures"
- 5. VMA, LS-266 (latest revision), "Determination of VMA in Compacted Bituminous Mixtures"

All test results shall be reported online and submitted by **2023 January 6, Friday**. An example of a completed report form is shown on Pages 4 and 5.

Note 7: Please identify the method used for the determination of flow by selecting from the dropdown feature on the Reporting Form.

Remember: Your lab's worksheets must be submitted through the portal with your proficiency report. Please combine all worksheets for each portal report into a single pdf prior to uploading. You are required to keep all original worksheet hard copies in a secure dedicated location such as a sealed envelope that is available to CCIL upon request. Do not courier/mail/fax/e-mail the worksheets to CCIL.

DO NOT send reports and worksheets by fax

		VVei	gh Card (m	ass in grar	ns)			
Mass			ggregate A-I-N			Fine Aggregate	Duet	Asphalt Cement
Туре	13.2mm *	9.5mm	4.75mm	2.36mm	Pass ** 2.36mm	MDFA-I-N	Dust	MDAC-I-N
Individual	23.2	247.3	298.6	18.9	8.0	550.2	41.3	62.5
Cumulative	23.2	270.5	569.1	588.0	596.0	1,146.2	1,187.5	1,250.0

Mix Design – Material I

Mixing Temperature = **145°C** AC Content = **5.00%** Compaction Temperature = 134°C

Notes:

1 * Is material retained on the 13.2mm sieve to be discarded? No

2 ** Is material passing the 2.36mm sieve material from coarse aggregate to be discarded? No OR

has the pass 2.36mm sieve material been included in the component package? No

- 3. *** Has dust been supplied separately? Yes. In a separate bag with the coarse aggregate.
- 4. Masses provided for BRD specimens are to be adjusted proportionally to provide for Maximum Theoretical Relative Density (MRD) test samples.

Mix Design – Material II

Weigh Card (mass in grams)

			(เกลรร แ	i yranisj				
Mass		Coarse A MDC	lggregate A-II-N			Fine Aggregate	Durat	Asphalt Cement
Туре	13.2mm *	9.5mm	4.75mm	2.36mm	Pass ** 2.36mm	MDFA-II-N	Dust	MDAC-II-N
Individual	11.2	226.5	266.1	11.6	5.4	636.6	30.1	62.5
Cumulative	11.2	237.7	503.8	515.4	520.8	1,157.4	1,187.5	1,250.0

Mixing Temperature = **148°C** AC Content = **5.00%**

Compaction Temperature = 135°C

Notes:

1. * Is material retained on the 13.2mm sieve to be discarded? No

2. ****** Is material passing the 2.36mm sieve material from coarse aggregate to be discarded? **NO**

OR

has the pass 2.36mm sieve material been included in the component package? NO

- 3. *** Has dust been supplied separately? YES. In a plastic bag with the fine aggregate bag.
- 4. Masses provided for BRD specimens are to be adjusted proportionally to

provide for Maximum Theoretical Relative Density (MRD) test samples.

2020 Asphalt Reporting Form Mix Design

Mix Design Report - Certification Program

- CCIL Confidential Lab # CCIL 999
- 🕨 Lab Name: Demo Lab

► Tested by:

- 💿 Lab Technician
- Supervisor / Manager
- Not listed

Please specify

Super Technician

Mix Design Report						
Test	A-MD-xxx x	A-MD-xxx y	- Avg	B-MD-xxx x	B-MD-xxx y	- Avg
BRD - LS-262/D2726	2.376	2.380	2.378	2.421	2.430	2.426
MRD - LS-264/D2041	2.485	2.484	2.484	2.504	2.504	2.504
% Voids	4.5	4.4	4.5	3.2	3.0	3.1
% VMA	15.6	15.8	15.7	14.2	14.4	14.3
Flow Measurement						
Automated Method						•
Marshall Stability and Flow of Bitum	ninous Mixtures - LS-263/D69	27				
Test	A-MD-xxx x	A-MD-xxx y	- Avg	B-MD-xxx x	B-MD-xxx y	- Avg
Stability (N)	10864	11625	11245	9424	9821	9623
Flow (0.25mm units)	10.4	10.2	10.3	9.6	10.2	9.9

Note: BRD values under "x" and "y" are the average of the group of 3 specimens.

Test	A-MD-xxx x	A-MD-xxx y	- Avg	B-MD-xxx x	B-MD-xxx y	- Avg
BRD - CA	2.705	2.702	2.704	2.694	2.689	2.692
Absorption - CA	1.358	1.385	1.372	1.403	1.391	1.397
Relative Density and Absorption of F	ine Aggregate - <i>L</i> S-605/784					
Test	A-MD-xxx x	A-MD-xxx y	- Avg	B-MD-xxx x	B-MD-xxx y	- Avg
BRD - FA	2.671	2.675	2.673	2.671	2.666	2.669
Absorption - FA	1.741	1.728	1.735	1.766	1.744	1.755
Comments						