IGNITION FURNACE GENERAL INSTRUCTIONS – Alberta and Yukon

Note: Labs in AB and YT are required to carry out the asphalt content by the Ignition Method using ASTM D6307, followed by gradation of Extracted Aggregate using D5444, noting that sieve sizes are as per the reporting forms.

The following samples have been forwarded to your laboratory:

Material A-IGCF-X (Five samples)

Material A-IGMF-X and B-IGMF-X (Two pre-mixed samples)

Asphalt Cement A-IGAC-X (One sample)

A) Ignition Furnace: Reference Procedure ASTM D6307

- 1) While furnace is at room temperature calibrate the furnace balance as described in the furnace manual provided by the manufacturer.
- 2) Set the combustion temperature of 540°C (deemed appropriate for this type of sample) or as indicated for Irradiation type furnace.
- 3) Set the start time (Auto Timer) so that the furnace is at the specified run temperature (see 2) above) for at least 60 minutes before starting the burn of the first sample of the day.
- 4) Set the furnace endpoint to 0.01% of the sample mass (D6307)

B) Sample Preparation

Correction Factor (A-IGCF-X) Samples:

- 1) Five sample bags containing approximately 1500g of mixed aggregates and one sample of asphalt cement are supplied
- 2) Aggregates are to be dried prior to mixing.
- 3) A clean mixing bowl will be buttered by mixing a separate sample of HMA (not supplied). The bowl will be scraped clean of this buttering mix prior to mixing the five samples supplied.
- 4) Mixing temperature for the correction factor samples is 150°C.
- 5) Weigh and record the dried aggregate sample.
- 6) Based on this weight add sufficient asphalt cement (supplied) to produce a mix containing **5.00%**, **A-IGAC-X** (based on total mix).
- 7) Mix the sample as indicated in D-6926
- 8) Transfer the mixed sample to a metal tray, spread it out, cover with metal foil and allow it to cool to ambient temperature.
- 9) Sample is now ready for testing.
- 10) Five samples are provided. Calibration Factor shall be determined from 3 of the 5 samples according to D6307.

Pre-mixed A-IGMF-X and B-IGMF-X Samples

1) Sample bags containing approximately 1500g of **A-IGMF-X** and **B-IGMF-X** are supplied and are ready for testing. Use total sample for analysis. Determination of moisture content is not required.

C) Ignition Furnace Run:

1) Weigh the lid, sample tray, catch pan and retaining bracket on the laboratory balance (TABLE 1 – for **A-IGCF-X** (Correction Factor) samples and TABLE 3 – for **A-IGMF-X and B-IGMF-X** (HMA) samples)

- 2) Preheat the sample to be tested to 110°C±5°C (i.e. sufficiently warm to handle). Do not heat for more than one hour.
- 3) Place catch pan under sample tray and spread sample evenly on the tray.
- 4) Place lid over sample tray and secure lid, tray and catch pan with the retaining bracket.
- 5) Weigh total assembly on the laboratory balance and record the mass to 0.1g (TABLE 1 for **A-IGCF-X** samples and TABLE 3 for **A-IGMF-X** and **B-IGMF-X** samples)
- 6) Calculate sample mass (C in both TABLE 1 and TABLE 3)
- 7) Enter the sample mass C in the furnace data system.
- 8) Place the assembly in the preheated furnace and close the door.
- 9) Heat the sample at the specified temperature (540°C) until the difference between consecutive mass loss measurements does not exceed requirements for three one minute intervals.
- 10) Record sample mass after ignition (from data tape) (TABLE 1 F for **A-IGCF-X** samples and TABLE 3 F for **A-IGMF-X** and **B-IGMF-X** samples).
- 11) Remove the assembly from the furnace and allow to cool to ambient temperature and weigh to the nearest 0.1g (TABLE 1 E for **A-IGCF-X** samples and TABLE 3 F for **A-IGMF-X** and **B-IGMF-X** samples).
- 12) Record required data from tapes in TABLES 1 and 3 for **A-IGCF-X** and **A-IGMF-X and B-IGMF-X** samples respectively.

NOTE 1: LABORATORIES SHOULD TAKE CAUTION REGARDING NEGATIVE CALIBRATION FACTORS. A LARGE NEGATIVE CALIBRATION FACTOR SUGGESTS THAT THE ASPHALT CEMENT HAS NOT BEEN COMPLETELY BURNED DURING THE IGNITION RUN

D) Ignited Aggregate Gradation

- 1) Carefully transfer the total residue after ignition to a weighing pan and weigh to the nearest 0.1g.
- 2) Proceed with the washed sieve gradation. Laboratories shall complete the attached work sheets (Tables 1-4) and submit copies of the output tapes from the ignition furnace runs.

Asphalt contents shall be expressed as a percentage of total weight of asphalt mix and as a percentage of total weight of dry aggregates.

All test results shall be reported online and submitted by **January 3 2020**

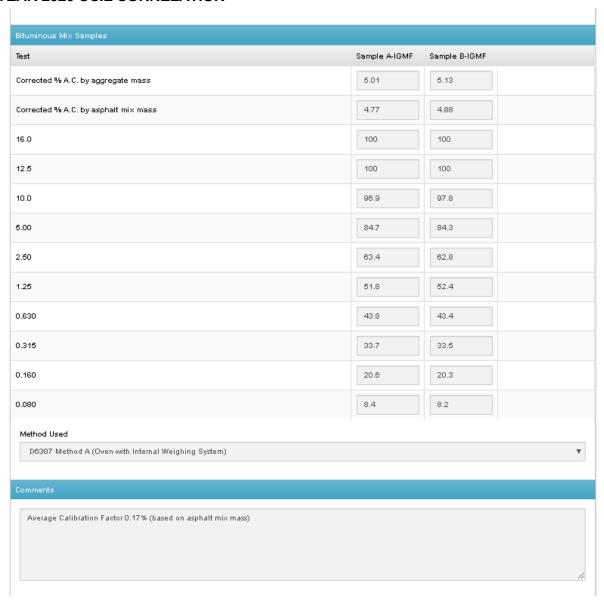
An example of a completed report form is shown on pages 3 and 4.

Note 2 (New this year) Please identify the method used (Method A or B) for the type of furnace by selecting from the dropdown feature on the Reporting Form.

Hard copies of the report forms and work sheets (including Tables 1-4) must be submitted by **January 3 2020** by mail or courier to:

Nabil Kamel, M.A.Sc., P.Eng. CCIL Program Manager 3410 South Service Road, Suite 104 Burlington, Ontario, L7N 3T2

Tel: 289-337-8888: Fax: 289-337-8889: email: nkamel@ccil.com


DO NOT send reports and worksheets by fax

2020 Asphalt Reporting Form Ignition Furnace

Ignition Furnace Report - Certification Program CCIL Confidential Lab # CCIL 999 Lab Name: Demo Lab Tested by: Lab Technician Supervisor / Manager Not listed Please specify Super Technician

Ignition Furnace Report			
Calibration Factor Samples			
Test Test	Sample I	Sample II	Sample III
0.0	100	100	100
2.5	100	100	100
0.0	97.6	96.9	97.4
.00	84.7	84.5	85.1
2.50	63.1	63.4	63.2
1.25	52.5	52.1	52.3
0.630	42.8	42.7	42.3
0.315	33.7	33.5	33.8
0.160	20.6	20.3	20.4
0.080	8.0	8.3	8.1
Calibration Factor	0.22	0.16	0.17
Sample #1 Used			
AIGCF-25			
Sample #2 Used			
AIGCF-50			
Sample #3 Used			
AIGCF-75			

TABLE 1: In-House Prepared Calibration Factor Samples

		G	eneral Inform	nation			
Compa	Company Name						
Technici	an's Name				Date		
		Sı	pecific Inform	nation		•	
				Calibra	ation Factor S	amples	
			Code No.	Code No.	Code No.	Code No.	Code No.
		La	aboratory Ba	lance		<u> </u>	
А	Mass of sampl	•					
В	par Mass of sam catch pan,	ple tray, lid,					
C = (B - A)	Initial Mass						
D	Mass of sample tray, lid, catch pan, sample after ignition, g						
E = (D - A)	Final mass of sample after						
		ſ	-urnace Bala	ince			
F	Final mass of ignition, g (-					
G = (C - F)	Loss Fu	rnace, g					
H = (G/C) x 100	Loss Fur	nace, %					
1	Loss Furnace	Correction, %					
J = (H - I)	Total Loss I (Appare						
К	Total AC	added, %					
L = (J - K)	Calibration Factor, %						
		Furnace	Temperature	Informatio	n		
Test tempera	ture shown on c	ontrols, °C					
Initial temper	ature from data	tape, °C					
Maximum ter	mperature form o	lata tape, °C					
Final temperature from data tape, °C							

TABLE 2: Gradation of In-House Prepared Calibration Factor Samples (After Ignition)

		Calibration Factor Samples						
		Code No.	Code No.	Code No.	Code No.	Code No.		
Laboratory	Initial Mass, g							
Balance	Final Mass, g							
Furnace	Initial Mass, g							
Balance	Final Mass, g							
			AGGREGATE					
Dry mas wash	s before ing, g							
Dry mass at	ter washing,							
			% Pa	ssing				
	16.0 mm							
	12.5 mm							
z	10.0 mm							
DATION	5.00 mm							
D A D	2.50 mm							
A A	1.25 mm							
O	0.630 mm							
	0.315 mm							
	0.160 mm							
	0.080 mm							

Laboratory Name:			
Date Tested:			

TABLE 3: Test Results - Premixed HMA Samples

		G	eneral Inform	nation			
Company Name							
Technician's Name				Date			
		Sı	pecific Inform	ation			
				Prepa	ared HMA Sa	mples	
			Code No.	Code No.	Code No.	Code No.	Code No.
		La	aboratory Ba	lance			
А	Mass of sampl par	•					
В	Mass of sam catch pan,	nple tray, lid,					
C = (B - A)	Initial Mass	of Sample, g					
D	Mass of sample tray, lid, catch pan, sample after ignition, g						
E = (D - A)	Final mass of sample after ignition, g						
		i	Furnace Bala	ince			
F	Final mass of ignition, g (•					
G = (C - F)	Loss Fu	rnace, g					
H = (G/C) x 100	Loss Fur	nace, %					
1	Loss Furnace	Correction, %					
J = (H - I)	Total Loss I (Appare						
CF*	Correction	Factor, %					
L = (J – CF)	Asphalt Cement, %						
		Furnace	Temperature	Information	1		
Test temperature shown on controls, °C							
Initial temper	ature from data	tape, °C					
Maximum ter	nperature form o	lata tape, °C					
Final temperature from data tape, °C							

* CF =	Calibration	factor as	derived from	the testing	a in	TABLE 1
--------	-------------	-----------	--------------	-------------	------	----------------

Date Tested:	
2020 Ignition Furnace Instructions	

TABLE 4: Gradation of Aggregates from Pre-mixed HMA Samples (After Ignition)

		Prepared HMA Samples					
		Code No.	Code No.	Code No.	Code No.	Code No.	
Laboratory	Initial Mass,						
Balance	g Final Mass, g						
	Initial Mass,						
Furnace Balance	g Final Mass,						
Balarioo	g g						
			AGGREGATE				
Dry mas	s before						
	ing, g ter washing,						
	g						
			% Pa	ssing			
	16.0 mm						
	12.5 mm						
z	10.0 mm						
ADATION	5.00 mm						
DAT	2.50 mm						
G R A	1.25 mm						
O O	0.630 mm						
	0.315 mm						
	0.160 mm						
	0.080 mm			_			

Laboratory Name:	Date Tested:	
Laboratory rearrio.	Bate 100toa	