

Canadian Council of Independent Laboratories

METHOD OF TEST FOR DETERMINATION OF V.M.A. IN COMPACTED BITUMINOUS MIXTURES

LS-266 R29

4. CALCULATIONS

4.1 VMA based on BRD of individual aggregates.....

$$VMA = \frac{Gb - Gc}{Gb} \times 100$$
$$= 100 - \frac{Db (100 - \% AC)}{Gb}$$

Where:

$$Gb = \frac{100}{\frac{\% \text{ Co Agg}}{\text{BRD Co Agg}} + \frac{\% \text{ Fi Agg } \#1}{\text{BRD Fi Agg } \#1} + \frac{\% \text{ Fi Agg } \#2}{\text{BRD Fi Agg } \#2} + \cdots}$$

Gc = $100 - \frac{\text{Db} (100 - \text{\%AC})}{100}$

Gb = bulk relative density of aggregate

Db = bulk relative density of compacted hot mix

BRD = bulk relative density

4.2 VMA based on BRD of blended coarse and blended fine aggregates.....

$$VMA = \frac{Gsb - Gc}{Gsb} \times 100$$
$$= 100 - \frac{Gmb \ (100 - \% AC)}{Gsb}$$

Where:

$$Gsb = \frac{100}{\frac{\% \text{ Co Agg (see Note 1)}}{\text{BRD Blended Co Agg}} + \frac{\% \text{ Fi Agg (see Note 1)}}{\text{BRD Blended Fi Agg #1}}$$

$$\mathsf{Gc} = \frac{\mathsf{Gmb} \ (100 - \%\mathsf{AC})}{100}$$

Gsb = combined bulk relative density of blended coarse and blended fine aggregates

Gmb = bulk relative density of compacted hot mix

BRD = bulk relative density

Note 1: % coarse and % fine aggregates shall be based on Job Mix Formula

(% passing/retained on 4.75 mm sieve)

6. NOTES

6.1 If the plant check gradation and AC content is very close to the mix design, then the Gsb from the mix design may be used.....

COMMENTS