

Canadian Council of Independent Laboratories

Standard Test Method of Resistance of FA to Degradation by Abrasion in the Micro Deval Apparatus ASTM D7428 - 15

APPARATUS / SECTION 6

- 1. Micro Deval Abrasion Machine: A jar rolling mill operating at 100 ± 5 rpm?
- 2. Micro Deval Abrasion Jars (Stainless Steel):
 - 5 L capacity with locking cover and water-tight gasket?
 - External diameter shall be 194 mm to 202 mm?
 Internal height shall be 194 mm to 202 mm?
 - Outside and inside surfaces to be smooth with no significant ridges or Indentations?
- 3. Abrasive Charge (Magnetic Steel Balls):
 - Diameter 9.5 ± 0.5 mm?
 1250 ± 5 g of steel balls required for each jar?
- 4. Sieves: With square openings and conforming to ASTM E11 specifications?......

As per ASTM D7428 / Clause 6.4

6.7 or 6.3 mm	600 µm
4.75 mm	300 µm
2.36 mm	150 µm
1.18 mm	75 µm

- 5. Oven: Capable of maintaining a uniform temperature of 110 ± 5°C?
- 6. Balance: Accurate to 0.1 g?

TEST SAMPLE / SECTION 8

- Test sample washed over a 75 μm sieve according to ASTM C117 and oven dried at 110 ± 5°C to a constant mass?
- 2. Wash and dried test sample and separated into individual size fractions in accordance with ASTM C136?
- 3. Individual fractions recombined to meet the following gradation?

P/4.75 mm / Fineness Modulus of 2.8

Passing	Retained	Mass
4.75 mm	2.36 mm	50 g
2.36 mm	1.18 mm	125 g
1.18 mm	600 µm	125 g
600 µm	300 µm	100 g
300 µm	150 µm	75 g
150 µm	75 μm	25 g
	Total	500 ± 5 g

Canadian Council of Independent Laboratories

Standard Test Method of Resistance of FA to Degradation by Abrasion in the Micro Deval Apparatus ASTM D7428 - 15

TEST PROCEDURE / SECTION 8

- a. Prepared a representative test sample (500 ± 5 g) record mass to the nearest
 0.1 g (A)?
- b. Placed test sample in Micro-Deval jar with 1250 ± 5 g steel balls add 750 ml ± 50 ml of tap water at 20 ± 5°C and let soak for a minimum of 1 h?
- c. Set cover on securely and place Micro-Deval jar on the machine?
- d. Run machine at 100 ± 5 rpm for $15 \text{ min} \pm 5 \text{ s}$?
- e. Poured test sample and steel balls over a 6.7 or 6.3 mm sieve into a suitable container?
- f. Carefully washed steel balls retained on sieve sieve?
- g. Removed steel balls from sieve?
- h. Washed FA material recovered in container in accordance with ASTM C117?
- i. Sample oven dried to $110 \pm 5^{\circ}$ C?
- J. Determine to the nearest 0.1 g and record mass (B)?

<u>Note:</u> A control sample (Calibration Aggregate) It is mandatory for the purpose of calibrating the test method – Refer to ASTM D7428 / Clause 7.1 and Section11 for details in establishing a supply of this material for use in calibration and procedural requirements.

Control or Reference Aggregate Prepared as Follows:

Passing	Retained	Mass
4.75 mm	2.36 mm	40 g
2.36 mm	1.18 mm	115 g
1.18 mm	600 µm	180 g
600 µm	300 µm	120 g
300 µm	150 µm	38 g
150 µm	75 µm	7 g
	Total	500 ± 5 g

CALCULATION / SECTION 10

a. Abrasion loss calculated as follows to the nearest 0.1 %?

Percent Loss = $(A - B) / A \times 100$

Where: A = Initial Mass (before prepared test sample placed in Micro Deval) B = Final Mass (washed and dried after completion of test procedure)

COMMENTS

September 2015