METHOD OF TEST FOR PREPARING AND DETERMINING THE DENSITY OF HOT MIX ASPHALT (HMA) SPECIMENS BY MEANS OF THE SUPERPAVE GYRATORY COMPACTOR

LS
3. ADDITIONAL REQUIREMENTS AND EXCEPTIONS
The method of test shall be in accordance with AASHTO T 312, with the following additional requirements and/or exceptions:

3.1 References to AASHTO T 209 shall be replaced with LS-264, reference to AASHTO T 166 shall be replaced with LS-262 and reference to AASHTO T 275 shall be replaced with LS-306.

AASHTO 4. APPARATUS

4.1. Superpave Gyratory Compactor – An electrohydraulic or electromechanical compactor with a ram and ram heads as described in Section 4.3.

The axis of the ram shall be perpendicular to the platen of the compactor.

The ram shall apply and maintain a pressure of 600 ± 18 kPa perpendicular to the cylindrical axis of the specimen during compaction (see Note 1).

The compactor shall tilt the determined in accordance with T 344.

The compactor shall gyrate the specimen molds at a rate of 30.0 ± 0.5 gyrations per minute throughout compaction.

AASHTO Note 1 – This stress calculates to 10 600 ± 310 N total force for 150 mm specimens.

4.1.1. Specimen Height Measurement and Recording Device – When specimen density is to be monitored during compaction, a means shall be provided to continuously measure and record the height of the specimen to the nearest 0.1 mm during compaction once per gyration.

4.1.2. The system may include a connected printer capable of printing test information, such as specimen height per gyration. In addition to a printer, the system may include a computer and suitable software for data acquisition and reporting.

4.2. Specimen Molds – Specimen molds shall have steel walls that are at least 7.5 mm thick and are hardened to at least a Rockwell hardness of C48.

The initial inside finish of the molds shall have a root mean square (rms) of 1.60 μm or smoother when measured in accordance with ASME B46.1 (see Note 2).

New molds shall be manufactured to have an inside diameter of 149.90 to 150.00 mm.

The inside diameter of the in-service molds shall not exceed 150.2 mm.

Molds shall be in accordance with Annex A.

AASHTO Note 2 – One source of supply for a surface comparator, which is used to verify the rms value of 1.60 μm, is GAR Electroforming, Danbury Connecticut.

4.3. Ram Heads and End Plates – Ram heads and end plates shall be fabricated from steel with a minimum Rockwell hardness of C48.

The ram heads shall stay perpendicular to their axis.

The platen side of each end plate shall be flat and parallel to its face.

All ram and end plate faces (the sides presented to the specimen) shall be flat to meet the smoothness requirement in Section 4.2 and shall have a diameter of 149.50 to 149.75 mm.
METHOD OF TEST FOR PREPARING AND DETERMINING THE DENSITY OF HOT MIX ASPHALT (HMA) SPECIMENS BY MEANS OF THE SUPERPAVE GYRATORY COMPACTOR

4.4. Thermometers – Armoured, glass, or dial-type thermometers with metal stems for determining the temperature of aggregates, binder, and HMA between 10 and 232°C.

4.5. Balance – A balance meeting the requirements of M231, Class G5, for determining the mass of aggregates, binder, and asphalt mixtures.

4.6. Oven – An oven, thermostatically controlled to ± 3°C, for heating aggregates, binder, asphalt mixtures, and equipment as required.

The oven shall be capable of maintaining the temperature required for mixture conditioning in accordance with R 30.

4.7. Miscellaneous – Flat-bottom metal pans for heating aggregates, scoop for batching aggregates, containers (grill-type tins, beakers, containers for heating asphalt), large mixing spoon or small trowel, large spatula, gloves for handling hot equipment, paper disks, mechanical mixer (optional), lubricating materials recommended by compactor manufacturer.

4.8. Maintenance – In addition to routine maintenance recommended by the manufacturer, check the Superpave gyratory compactor’s mechanical components for wear, and perform repair, as recommended by the manufacturer.

6. STANDARDIZATION

6.1. Items requiring periodic verification of calibration include the ram pressure, angle of gyration, gyration frequency, LVDT (or other means used to continuously record the specimen height), and oven temperature.

Verification of the mold and platen dimensions and the inside finish of the mold are also required.

When the computer and software options are used, periodically verify the data processing system output using a procedure designed for such purposes.

Verification of calibration, systems standardization, and quality checks may be performed by the manufacturer, other agencies proving such services, or in-house personnel.

Frequency of verification shall follow the manufacturer’s recommendations.

6.2. The angle of gyration refers to the internal angle (tilt of the mold with respect to the end plate surface within the gyratory mold).

The calibration of the internal angle of gyration shall be verified in accordance with T 344.

7. PREPARATION OF APPARATUS

7.1. Immediately prior to the time when the asphalt mixture is ready for placement in the mold, turn on the main power for the compactor for the manufacturer’s required warm-up period.

7.2. Verify the machine settings are correct for angle, pressure, and number of gyrations.

7.3. Lubricate any bearing surfaces as needed per the manufacturer’s instructions.
7.4. When specimen height is to be monitored, the following additional item of preparation is required. Immediately prior to the time when the asphalt mixture is ready for placement in the mold, turn on the device for measuring and recording the height of the specimen, and verify the readout is in the proper units, mm, and recording device is ready. Prepare the computer if used, to record the height data, and enter the header information for the specimen.

8. HMA MIXTURE PREPARATION

8.1. Laboratory Prepared:

5.3.2 At least 2 specimens shall be prepared at each asphalt cement content for mix design purposes or for each sample when testing plant-produced hot mix.

AASHTO 8.1.1. Weigh the appropriate aggregate fractions into a separate pan, and combine them to the desired batch weight. The batch weight will vary based on the ultimate disposition of the test specimens.

If a target air void level is desired, as would be the case for Superpave mix analysis and performance specimens, batch weights will be adjusted to create a given density in a known volume.

If the specimens are to be used for the determination of volumetric properties, the batch weights will be adjusted to result in a compacted specimen having dimensions of 150 mm in diameter and 115 + 5 mm in height at the desired number of gyrations.

AASHTO Note 3 – It may be necessary to produce a trial specimen to achieve this height requirement.

Generally, 4500 to 4700 g of aggregate are required to achieve this height for aggregates with combined bulk specific gravities of 2.550 to 2.700, respectively.

8.1.2. Place the aggregate and binder container in the oven and heat them to the required mixing temperature.

8.1.2.1. The mixing temperature range is defined as the range of temperature where the unaged binder has a viscosity of 0.17 ± 0.02 Pa·s when measure in accordance to T 316.

AASHTO Note 4 – Modified asphalts may not adhere to the equiviscosity requirements, and the manufacture’s recommendations should be used to determine mixing and compaction temperatures.

8.1.3. Charge the mixing bowl with the heated aggregate from one pan and dry-mix thoroughly.

Form a crater in the dry-blended aggregates, and weigh the required amount of binder into the mix immediately initiate mixing.

8.1.4. Mix the aggregate and binder as quickly and thoroughly as possible to yield an asphalt mixture having a uniform distribution of binder. As an option, mechanical mixing may be used.

8.1.5. After completing the mixture preparation, perform the required mixture conditioning in accordance with R 30.
METHOD OF TEST FOR PREPARING AND DETERMINING THE DENSITY OF HOT MIX ASPHALT (HMA) SPECIMENS BY MEANS OF THE SUPERPAVE GYRATORY COMPACTOR LS-313 R28 AASHTO T312-14

8.1.6. Place the compaction mold(s) and base plate(s) in an oven at the required compaction temperature for a minimum of 30 min prior to the estimated beginning of compaction (during the time the mixture is being conditioned in accordance with R 30) ...

8.1.7. Following the mixture conditioning period specified in R 30, if the mixture is at the compaction temperature, proceed immediately with the compaction procedure as outlined in Section 9..........

If the compaction temperature is different from the mixture conditioning temperature used in accordance with R 30, place the mix in another oven at the compaction temperature for a brief time (maximum of 30 min) to achieve the required temperature...

8.1.7.1. The compaction temperature is the midpoint of the range of temperatures where the unaged binder has a viscosity of 0.28 ± 0.03 Pa·s when measured in accordance with T 316 (see Note 4.)..

8.2. Plant Produced

LS 3.2 At least 2 specimens shall be prepared at each asphalt cement content for mix design purposes or for each sample when testing plant-produced hot mix...

AASHTO 8.2.1. Place the compaction mold(s) and base plate(s) in an oven at the required compaction temperature (see Section 8.1.7.1.)..

8.2.2. Obtain the sample in accordance with T 168..

LS 3.4 When testing plant-produced mix, the following shall apply:

3.5.1 (Actually 3.4.1, etc) Samples that are received hot in a laboratory shall be cooled to room temperature prior to any testing...

Alternatively, the sample may be split to the size required for testing and the test portion(s) allowed to cool to room temperature...

Samples received in the lab in a stiff or unworkable condition, and that need to be reduced to smaller test portions, shall be warmed up using an oven set at 110 ± 5°C to make them workable. The sample shall only be held in the oven long enough to achieve workability...

LS Note 1: A single mix sample shall be supplied in not more than 2 receptacles that shall comply with the owner’s requirements for mass and size. If a single sample is supplied in two receptacles, it is only necessary to combine the material from the 2 if there is insufficient mass in 1 container to carry out all the requisite testing...

LS Note 2: Mixes containing polymer modified asphalt binders will need to be warmed up to higher temperatures to make them workable. The temperature employed shall be determined by trial and error, it shall be the lowest possible to achieve workability, and it shall be a minimum of 15°C below the compaction temperature of the mix...

Note 3: The initial warming up of the sample may also be accomplished using a microwave oven. However, due care shall be exercised to prevent localized overheating of the mixture...

3.5.2 Samples shall be reduced to the test portion size using either a riffle splitter or by quartering (see LS-261 for details pertaining to these methods)..
METHOD OF TEST FOR PREPARING AND DETERMINING THE DENSITY OF HOT MIX ASPHALT (HMA) SPECIMENS BY MEANS OF THE SUPERPAVE GYRATORY COMPACTOR

LS Note 4: Each test portion shall yield a gyratory specimen 115 ± 5 mm high. An estimate of the mass required for this purpose can be obtained from the mix design and/or from any previous testing done on the mix.

Sample portions for gyratory specimens should be adjusted to provide a sample height as close as practical to 115 mm based on the weights used and heights obtained during initial testing completed on the mix.

Sample weight adjustment should be performed while the samples are heating to compaction temperature in the oven.

It is permissible to “spoon” a representative portion of material in or out of the sample pan to adjust the sample weight to obtain the 115 mm target sample height.

3.5.3 Place the individual test portions in flat-bottomed pans to a uniform thickness of 40-60 mm and cover the mix with tin foil or other suitable means to minimize oxidation. Testing of the samples shall continue in accordance with section 3.5.4 after the individual sample fractions have been prepared.

3.5.4 The test portions shall be transferred immediately to an oven set at a temperature not more than 10°C above the compaction temperature established for the mix.

Monitor closely the mix temperature, so that the sample can be removed from the oven immediately on reaching the compaction temperature.

Stir the mix approximately every 30 min until the compaction temperature is reached.

LS Note 5: Samples shall be kept in the oven only long enough to achieve the compaction temperature.

When working with multiple samples, the laboratory shall plan the work in a manner such that a flow is maintained between the discharge of the sample pans from the compaction oven and the completion of the compaction process (including the preparation of the moulds for reuse).

A 15-min interval in loading the samples into the compaction oven has been found to be satisfactory in achieving this flow.

AASHTO 9.1. Place the base plate and a paper disk in the bottom of the mold.

LS 3.5.5 Remove the sample pan from the oven and transfer the mix onto a trough preheated to the compaction temperature.

Slide the mix into the mould in a manner that minimizes segregation.

LS Note 6: The trough shall be of sufficient size and flexibility to enable transfer of the mix without spillage.

LS Note 7: The mould shall only be charged when the mix is at the designated compaction temperature.

Cooling or reheating of the mix while it is in the mould shall be avoided.

3.5.6 Proceed with the compaction of the samples and subsequent density determination following the same procedure as for mix design work.
AASHTO 9. COMPACATION PROCEDURE

9.2. After all the mix is in the mold, level the mix, and place another paper disk and upper plate (if required) on top of the levelled material.

9.3. Load the charged mold into the compactor, and center the loading ram.

9.4. Apply a pressure of 600 ± 18 kPa on the specimen.

9.5. Apply a 1.16 ± 0.02 degrees average internal angle to the mold assembly, and begin the gyratory compaction.

9.6. Allow the compaction to proceed until the desired number of gyrations specified in R 35 is reached and gyratory mechanism shuts off.

9.7. Remove the angle from the mold assembly, remove the ram pressure, and retract the loading ram in the order specified by the SGC manufacturer (the preceding steps may be done automatically by the compactor on some models of SGCs).

Remove the mold from the compactor (if required), and extrude the specimen from the mold.

AASHTO Note 5 – No additional gyrations with the angle removed are required unless specifically called for in another standard referencing T 312. The extruded specimen may not be a right angle cylinder. Specimen ends may need to be sawed to conform to the requirements of specific performance tests.

AASHTO Note 6 – The specimens can be extruded from the mold immediately after compaction for most asphalt mixtures. However, a cooling period of 5 to 10 min in front of a fan may be necessary before extruding some specimens to ensure the specimens are not damaged.

9.8. Remove the paper disks from the top and bottom of the specimens.

LS 3.3 Moulds shall be cleaned after each use. If a cleaner is used, it shall not leave a residue. Moulds that are reused shall be placed in the oven for a minimum of 30 min. A shorter timeframe is acceptable if the mould has reached the compaction temperature.

10. DENSITY PROCEDURE

10.1. Determine the maximum specific gravity (Gmm) of the loose mix in accordance with LS-264 using a companion sample.

The companion sample shall be conditioned to the same extent as the compaction sample.

10.2. Determine the bulk specific gravity (Gmb) of the specimen in accordance with LS-262 or LS-306 as appropriate.

10.3. When the specimen height is to be monitored, record the specimen height to the nearest 0.1 mm after each revolution.
11. DENSITY CALCULATIONS

11.1. Calculate the uncorrected relative density (%Gmmux) at any point in the compaction process using the following equation: ...

\[
\text{%Gmmux} = \frac{W_m}{V_{mx} Gmm Gm} \times 100
\]

Where:
\% \text{Gmmux} = \text{uncorrected relative density at any point during compaction expressed as a percent of the maximum theoretical specific gravity}
\nm = \text{mass of the specimen, g}
\nm = \text{theoretical maximum specific gravity of the mix}
\m = \text{unit weight of water, 1 g/cm}^3
\n\chi = \text{number of gyrations}
\n\V_{mx} = \text{volume of the specimen, in cm}^3, \text{at any point based on the diameter (d) and height (h_x) of the specimen at that point (use “mm” for height and diameter measurements)}

It can be expressed as:
\[
\V_{mx} = \frac{\pi d^2 h_x}{4 \times 1000}
\]

AASHTO Note 8 – This formula gives the volume in cm\(^3\) to all for a direct comparison with the specific gravity..

11.2. At the completion of the bulk specific gravity test (Gmb), determine the relative density (%Gmmx) at any point in the compaction process as follows: ...

\[
\text{%Gmmx} = \frac{G_{mb h_m}}{G_{mm h_x}} \times 100
\]

Where:
\% \text{Gmmx} = \text{corrected relative density expressed as a percent of the maximum theoretical specific gravity}
\mb = \text{bulk specific gravity of the extruded specimen}
\h_m = \text{height in millimetres of the extruded specimen}
\h_x = \text{height in millimetres of the specimen after} \chi \text{ gyrations}
ANNEX A – EVALUATING SUPERPAVE GYRATORY COMPACTOR (SGC) MOLDS – MANDATORY

A1. SCOPE

A1.1. This Annex (A1 through A7) covers the evaluation of the molds as a check for compliance with the requirements outlined in Sections 4.2. and 4.3. Measurements of the mold inside diameter and end-plate diameters as well as visual inspection of critical surface conditions are included.

Minimum frequency of this evaluation is 12 months or 80 hours of operation.

The inside diameter of the molds may be measured using a three-point bore gauge or a Coordinate Measuring Machine (CMM). See Annexes A4 and A5 for additional procedures for using these devices.

COMMENTS